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Significance

The synthetic language 
generated by recent Large 
Language Models (LMs) strongly 
resembles the natural languages 
of humans. This resemblance has 
given rise to claims that LMs can 
serve as the basis of a theory of 
human language. Given the 
absence of transparency as to 
what drives the performance of 
LMs, the characteristics of their 
language competence remain 
vague. Through systematic 
testing, we demonstrate that LMs 
perform nearly at chance in 
some language judgment tasks, 
while revealing a stark absence 
of response stability and a bias 
toward yes- responses. Our 
results raise the question of how 
knowledge of language in LMs is 
engineered to have specific 
characteristics that are absent 
from human performance.
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Humans are universally good in providing stable and accurate judgments about what 
forms part of their language and what not. Large Language Models (LMs) are claimed to 
possess human- like language abilities; hence, they are expected to emulate this behavior 
by providing both stable and accurate answers, when asked whether a string of words 
complies with or deviates from their next- word predictions. This work tests whether sta-
bility and accuracy are showcased by GPT- 3/text- davinci- 002, GPT- 3/text- davinci- 003, 
and ChatGPT, using a series of judgment tasks that tap on 8 linguistic phenomena: 
plural attraction, anaphora, center embedding, comparatives, intrusive resumption, 
negative polarity items, order of adjectives, and order of adverbs. For every phenomenon, 
10 sentences (5 grammatical and 5 ungrammatical) are tested, each randomly repeated 
10 times, totaling 800 elicited judgments per LM (total n = 2,400). Our results reveal 
variable above- chance accuracy in the grammatical condition, below- chance accuracy 
in the ungrammatical condition, a significant instability of answers across phenomena, 
and a yes- response bias for all the tested LMs. Furthermore, we found no evidence that 
repetition aids the Models to converge on a processing strategy that culminates in stable 
answers, either accurate or inaccurate. We demonstrate that the LMs’ performance in 
identifying (un)grammatical word patterns is in stark contrast to what is observed in 
humans (n = 80, tested on the same tasks) and argue that adopting LMs as theories of 
human language is not motivated at their current stage of development.

Language Models | cognitive models | bias | language

Language Models (LMs) are algorithms trained on generating probability distributions 
over tokens present in their input. Building on surface similarities between human and 
LM- generated language, a renewed interest toward LMs as theories of the human language 
capacity has been growing, and numerous studies have aimed at characterizing LM capa-
bilities in different domains of grammar (1–3). The view of LMs as models of human 
language, however, and the subsequent characterization of their behavior through employ-
ing constructs originally conceived with human language in mind rely on one unsettled 
premise: LMs emulate human linguistic behavior such that their production is akin to 
natural language.

The role of cognitive models is to inform about a real- world target system (4): in this 
case, language. Observing superficial similarities between the model and the target system 
is interesting, but it is not enough. Unless our theories about LMs also account for the 
dissimilarities that mark LM performance as distinctively non- human (5), claiming that 
LMs have a human- like language understanding is not fully motivated. In particular, it 
has not yet been demonstrated that LMs possess the fundamental ability to discern possible 
from impossible language (6–9). If LMs truly learn language, this should in principle 
entail the ability to learn and apply rules of grammar consistently and reliably. If a human 
h has learned a language rule s, we expect h to apply s in all contexts where s is productive, 
as well as to consistently identify the violations of s as such. For example, we expect adult, 
neurotypical speakers of English to consistently produce “I ate an apple” instead of *“I 
eated an apple”, and to reliably recognize the latter as ill- formed, because of having 
acquired both the rule that governs past formation and its exceptions. Similarly, if a LM 
has learned s, it is expected to apply it consistently in all contexts that legitimately license 
its use.

Grammaticality Judgments

From an experimental perspective, this consistent ability to recognize well-  and ill- formed 
sentences as such translates into the replicability of human judgments about what forms part 
of our linguistic repertoire (10, 11). Though subject to context- dependent and performance 
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factors [e.g., fatigue, temporary distraction, short- term memory 
limitations (12, 13)], research in linguistics has shown that such 
judgments in humans are robust and reliable (10, 14–16). Even 
when testing users of non- standard varieties that allow for a greater 
degree of variation, eliciting such judgments is an optimal method 
of establishing the limits of people’s grammars (17). Lack of stand-
ardization and official education in a language may affect people’s 
ability to reflect on their language (18), which is why such tasks in 
humans often instruct the participants to judge the well- formedness 
of the stimuli based on how they use language, disregarding what is 
prescriptively judged as the correct way to speak. Consequently, 
eliciting reliable judgments of grammatical well- formedness is pos-
sible even when testing speakers of moribund varieties, who may 
lack formal education (19). In such cases, comparisons between 
speakers/signers of the same community can quantify and explain 
any apparent “judgment unreliability” as variation, or as a conscious 
effort to project a specific linguistic identity, or as an indication of 
ongoing language change (20), without altering the fact that human 
judgments, once properly elicited, provide good evidence for people’s 
language (11, 17–19).

Do LMs provide equally reliable judgments? At present, this 
question lacks a clear answer. Claiming human- like formal com-
petence in LMs (21, 22) presupposes endorsing that these models 
have succeeded at extracting rules of natural language grammar 
from their training data. If LMs have successfully learned such 
rules to the point that they can be described as having human- like 
language competence, we expect this ability to translate into gram-
maticality judgments that simultaneously i) are correct and ii) do 
not change when a linguistic stimulus is prompted repeatedly in 
a task. In other words, if the sentence “I ate an apple” appears 10 
times in a task, humans who have acquired the relevant rules 
should judge it as correct consistently, without significant wavering 
in their judgments. Similarly, grammatically ill- formed sentences 
(e.g. *“Apple ate I an”) should be largely judged as ill- formed, no 
matter how many times they are seen.

In relation to (ii), one aspect that merits clarification concerns 
the use of the term “grammaticality” instead of “acceptability”. 
While humans make judgments of acceptability (13), LMs can only 
be informative about grammaticality, for they lack the embodied 
cognition that drives the difference between what the official gram-
mar rule posits as grammatically correct/wrong and what a person 
deems acceptable based on how they use the language in different 
contexts, guided by self- benefiting communicative needs such as 
saving face or projecting a specific identity. From this distinction 
between grammaticality (in LMs) and acceptability (in humans) it 
follows that, while LM judgments are expected to be stable across 
all repetitions of a given stimulus, humans may occasionally vary 
to a limited degree in their judgments due to temporary distrac-
tions, fatigue, an internal need to emphasize specific aspects of their 
identity, etc. Such performance factors are absent from LMs; hence, 
we expect them to show stability rates that equal or even surpass 
those of humans. To sum up, based on what we know from human 
linguistic behavior, should either accuracy of judgments, stability, 
or both, be missing, the belief that LMs possess human- like lan-
guage competence should be reconsidered, while their validity as 
theories of human language becomes doubtful.

To test the status of LMs as agents showing human- like language 
abilities, we develop and apply a series of grammaticality judgment 
tasks in three different LMs. The aim is to determine how LMs 
perform in tasks that test their ability to recognize (un)grammatical 
sentences. More specifically, three research questions (RQ) derive 
from this aim: RQ1. Is the LM performance accurate? RQ2. Is the 
LM performance stable? RQ3. Does the LM performance improve 
in terms of either accuracy or stability if a prompt is repeatedly used?

Materials and Methods

Sentence Material. The employed grammaticality judgment tasks test knowl-
edge on 8 linguistic phenomena: plural attraction (23); anaphora (24); center 
embedding (25); comparative sentences (26); intrusive resumption (27); negative 
polarity items (28); order of adjectives (29); and order of adverbs (30). These phe-
nomena were chosen for two reasons. First, because most of them are regularly 
showcased in LM outputs, so they unequivocally fall within the training domain 
of the tested LMs. Second, they are all evaluable without context. Since there is 
not much systematic testing of LMs across grammatical phenomena, we opted 
to include in our task battery some lesser- known phenomena, such as multiple 
adverb ordering, to explore how LMs behave in a wider range of grammatical 
domains. Each phenomenon involves 10 sentences: 5 grammatical and 5 ungram-
matical. SI Appendix, Table S1 in Supporting Information presents the task para-
digm for one phenomenon and summarizes the remaining phenomena with one 
sample sentence per condition. The complete list of sentences alongside their 
sources are available at https://osf.io/7ajxr/.

With respect to the nature of the tested stimuli, all ungrammatical sentences 
are ungrammatical because they involve a violation of a specific rule of grammar. 
None of them is classified as ungrammatical due to processing reasons. Similarly, 
all grammatical prompts are grammatical, regardless of how easy they are to 
process. For example, the grammatical prompt “The ancient manuscript that the 
grad student who the new card catalog had confused a great deal was studying 
in the library was missing a page” may be long and relatively hard to parse, but 
it does not violate any rule of the English grammar. The ungrammatical prompt 
*“The trophy that the athlete who the restaurant had hired as a spokesman was 
stolen later” is ungrammatical because it is missing a verb (cf. “The trophy that 
the athlete who the restaurant had hired as a spokesman won was stolen later”), 
not because of its length or its center embedding.

LMs. Each grammaticality judgment was elicited using the following prompt: 
“Is the following sentence grammatically correct in English? insert_sample_sen-
tence”. The elicited yes/no judgments were coded for accuracy (1 for accurate 
responses, 0 for inaccurate responses) and stability (1 for change from the pre-
vious judgment given to the same prompt, 0 for absence of change). As men-
tioned above, for each linguistic phenomenon, a total of 10 sentences (split in 
two conditions: 5 grammatical sentences and 5 ungrammatical sentences) was 
presented. Each sentence was prompted 10 times. The obtained dataset consists 
of 2,400 responses (i.e., 800 judgments on 80 different sentences per each LM). 
The prompts from all linguistic phenomena were merged in a unified pool and 
were then presented variably to each LM in a randomized way, using an online 
list randomizer.

The prompts were given to GPT- 3/text- davinci- 002 in November 2022 (hence-
forth: davinci2); to GPT- 3/text- davinci- 003 in January 2023 (henceforth: dav-
inci3); and to ChatGPT in February 2023. All models were set on default interface 
parameters. Davinci2 and davinci3 are GPT- 3 powered models (31). Davinci2 is 
trained with supervised fine- tuning on human- written or highly rated text sam-
ples. Building on davinci2, davinci3 is additionally trained using Reinforcement 
Learning from Human Feedback (RLHF). Finally, ChatGPT is fine- tuned from a 
model of the GPT- 3.5 series at the time of testing and again trained with RLHF. 
The choice of testing three successive LMs of the same family aims to find whether 
changes in terms of the parameters and the size of training data, generally asso-
ciated with improved overall performance, entail better performance also for the 
task at hand. Such longitudinal analyses offer insights as to which methods may 
contribute toward achieving better general- task performance, while across- model 
comparisons are likely to reveal whether more recent LMs (e.g., GPT- 4, Bard) do 
not suffer from the limitations of their predecessors.

Human Data. For comparison purposes, we elicited judgments for the same 
sentences from human participants (n = 80; 38 F, 42 M), recruited through the 
crowdsourcing platform Prolific. All participants were native speakers of English, 
self- identified as not neurodivergent. The experiment was conducted in line with 
the ethical principles of the Declaration of Helsinki. It was approved by the ethics 
committee of the Department of Psychology at Humboldt- Universität zu Berlin 
(application 2020- 47).

In terms of material, we used the same sentences presented to the LMs. The 
sentences were split for grammatical phenomenon giving rise to 8 different lists, 
with 100 sentences per list/phenomenon (i.e., 5 grammatical sentences and  D
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5 ungrammatical sentences, each repeated 10 times). As attention checks, we 
added two additional sentences (grammatical: “The new door is red”; ungram-
matical: “*Red is new door the”), each repeated 5 times. These served as control 
points and are not part of the analyses. Data from 14 additional participants 
who did not provide the correct answer to all attention- check sentences were 
removed from the analyses. To keep the experiment at a reasonable length in 
order to ensure data quality, each participant was presented with one of these 8 
lists (5 male and 5 female participants per list), with all 110 sentences presented 
in random order.

In terms of the process, after giving informed consent to participate in the 
study and providing their demographic data, participants were instructed that 
they would be presented with 110 sentences, and that their task was to indicate 
whether the sentences were or not grammatically correct in English (by pressing 
the C key or the N key respectively). For each trial, the screen showed 1) the exact 
same question given to the LMs (“Is the following sentence grammatically correct 
in English?”), followed by 2) the sentence itself, as well as 3) an instruction at 
the bottom of the screen stating “Press C if it is correct, and N if it is not correct”.

The experiment was implemented using the jsPsych toolkit (32). The median 
completion time for the experiment was 9.22 min. Full participant data are avail-
able at https://osf.io/7ajxr/.

Results

Results are presented separately for accuracy, stability, and their 
interplay. We used (Generalized) Linear Mixed Effect Models ((G)
LMMs) to analyze our data. Details about the statistical analyses 
and the annotated code together with datasets are available at 
https://osf.io/7ajxr/.

Accuracy.
Accuracy by model and condition. The accuracy rates by model and 
condition (grammatical/ungrammatical) are shown in Fig. 1A1. 
The intercept of an intercept- only GLMM was significantly 
different from zero (β = 0.585, z = 2.61, P = 0.009), indicating 
that the overall LM accuracy is above chance, but at an absolute 
mean accuracy rate of M = 0.572, it is also clearly far from perfect. 
Further LR- tests indicate a significant main effect of condition 
(X2(1) = 68.41, P < 0.001). None of the three models performs 
above chance level for ungrammatical sentences (Fig.  1A1). 
Adding a main effect for the factor model did not improve the 
GLMM (LR- test: X2(2) = 2.97, P = 0.227), indicating that there 
are no significant overall differences between mean accuracies of 
0.590 for davinci2, 0.556 for davinci3, and 0.570 for ChatGPT.*

However, a GLMM including an interaction between both 
factors significantly outperformed the condition- only model 
(X2(4) = 235.84, P < 0.001). Thus, models that are more accurate 
in the grammatical sentences are at the same time less accurate in 
the ungrammatical sentences, to the degree that there is no dis-
cernible overall difference between models. This demonstrates a 
general response bias for the yes- response rather than a genuinely 
higher accuracy (overall, 74.7% of responses are yes- responses; 
60.0% for davinci2, 89.1% for davinci3, and 75% for ChatGPT). 
Thus, the almost top- level performance of davinci3 for grammat-
ical sentences (CI.95 = [0.954, 0.987] for the model intercept 
when these factor levels are set as reference conditions) is offset 
by its very low accuracy for ungrammatical sentences (CI.95 = 
[0.079, 0.187]), leaving it at an overall accuracy not higher than 
the other two models.

Differences between grammatical phenomena. In a follow- up 
analysis, we examined whether there are differences in model 
accuracy for the different grammatical phenomena we tested. 
Since we considered different phenomena as a general source of 
variation, we had no specific hypotheses as for which phenomena 
we expect higher or lower accuracy and therefore analyzed this 
variable only at the factor level.

We observed a main effect of condition (LR- test: X2(1) = 68.39, 
P < 0.001), an additional main effect of phenomenon (X2(7) = 
14.18, P = 0.048), and an additional interaction between the two 
(X2(7) = 102.91, P < 0.001). The mean accuracy rates by phenom-
enon and condition are displayed in Fig. 1B. As can be seen, the 
accuracy for ungrammatical sentences is lower than for grammatical 
sentences across all phenomena. Plural attraction is the only phe-
nomenon for which the performance for ungrammatical sentences 
is above chance level (β = 0.929, z = 3.98, P < 0.001 for the inter-
cept in the GLMM with this condition as the reference level).

Stability. To examine to what extent LMs provide stable responses, 
we analyzed two different metrics measuring two different aspects 
of (in)stability (Table 1): Oscillation is a local measure, defined at 
the individual trial level as the number of trials in which the LM 
judgment for a given prompt differs from the one given at the 
previous trial. Deviation is a global measure defined at the sentence 
level, that indicates how often the LM provides the less frequent 
response. Deviation is therefore directly and strictly monotonously 
related to the Shannon entropy of the response distribution, but 
scales in a linear manner, which is more adequate for an analysis 
with linear models. Examples for these two measures, and how they 
differ for different response sequences, are provided in Table 1.
Stability by model and condition. For oscillations, the intercept in 
an intercept- only GLMM is significantly below zero (β = −1.28, z 
= −10.91, P = <0.001), indicating that the probability of observing 
an oscillation is less than fifty percent and thus consecutive 
responses are not completely random. At the same time, the CI 
for the likelihood of an oscillation at CI.95 = [0.181, 0.259] does 
not include zero, indicating a considerable degree of instability 
in the responses. We find an additional main effect of model 
(LR- test: X2(2) = 114.39, P < 0.001), indicating a difference 
in stability between the three models, and an additional main 
effect of condition (X2(1) = 13.68, P < 0.001), but no significant 
interaction between these two factors (X2(2) = 2.60, P = 0.272). 
The effects of both factors on oscillations are displayed in Fig. 2A, 
showing the lowest number of oscillations for the davinci3 model 
(followed by ChatGPT and davinci2) and grammatical sentences. 
However, even when these most stable factor levels were set as 
the reference levels, the intercept of the GLMM did not include 
zero (CI.95 = [0.054, 0.110]), demonstrating some degree of 
instability even there. When doing the same for the least stable 
case (davinci2, ungrammatical sentences), the intercept is not 
significantly different from zero (β = −0.21, z = −1.24, P = 0.216), 
indicating that a response is not predictable from the previous 
response for the same sentence.

In the intercept- only LMM for deviations, this intercept is 
significantly higher than zero (b = 1.84, t(79) = 14.77, P = <0.001), 
indicating that the models provide some deviating responses across 
all items (1.84 on average; CI.95 = [1.59, 2.08]). Here, we find a 
significant main effect for model (LR- test: X2(2) = 56.77,  
P < 0.001), for condition (X2(1) = 9.10, P = 0.002), and for their 
interaction (X2(2) = 6.79, P = 0.033). The effects of both factors 
on deviation are displayed in Fig. 2B. Even in the most stable case 
(davinci3, grammatical sentences), there is a non- zero number of 
deviating answers (CI.95 = [0.06, 0.99]). In the most unstable 
case (davinci2, ungrammatical sentences), the number of deviating 

*An analysis of the d′ measure that considers both the hit rate and the false alarm rate in 
a single measure replicates the same pattern of a slightly above chance performance, with 
no difference between the three models. Specifically, we compared the models (8 phe-
nomena × 3 models, giving a total of 24 data points), using a standard linear regression 
model with d′ as the dependent variable and model as a fixed effect predictor. The obtained 
intercept of 0.63 indicates a sensitivity slightly above chance level (which would be a d′ of 
zero), in line with the 0.585 overall accuracy rate reported in the original analysis.D
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answers is very high but still differs from the maximum value of 
five (CI.95 = [2.83, 3.77]), indicating that despite the high insta-
bility, the model still tends to “prefer” one response alternative.

In the interpretation of these results, it is again important to 
note that a higher response stability can be caused by a general 
response bias toward the “yes” or “no” answers, which (considering 
the results of the accuracy analysis) is a very likely reason why 
responses by the davinci3 model are more stable.

The Interplay between Stability and Accuracy. So far, we have 
seen that all LMs show clear deficits with respect to both accuracy 
and stability. However, these variables are intertwined, as stability 
sets clear bounds to the minimum and maximum level of accuracy 
possible (the number of deviations, and the number of repetitions 
minus the number of deviations, respectively). Here, we examine 
in more detail two ways in which the lack of stability could affect 
accuracy: Specifically, first we test whether the lack of accuracy is a 

direct consequence of the lack of stability. Second, we test whether 
the lack of stability might play out in a positive direction, allowing 
the model to repair initially incorrect responses over repetitions 
of the same prompt.
Does the lack of accuracy follow from the lack of stability? Given that 
the last analysis has shown that all models in all conditions show 
some degree of preference for one of the two responses, it may 
be the case that we find that the models provide accurate answers 
once we factor out the stability factor by only considering these 
preferred answers for each item (i.e., discarding and ignoring all 
deviations).

In this GLMM analysis (with the preferred response as only 
one data point per sentence and model), we observe a main effect 
for condition (LR- test: X2(1) = 82.59, P < 0.001), no main effect 
for model (X2(2) = 2.51, P = 0.286), and an interaction between 
the two factors (X2(2) = 27.40, P < 0.001). The effects of both 
factors on preferred- response accuracy are shown in Fig. 1A2. As 
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Fig. 1. (A) Mean accuracy by condition and model: (A1) individual responses; (A2) preferred responses per sentence. (B) Mean accuracy by phenomenon and 
condition. The dashed black line indicates the mean accuracy for each phenomenon across both conditions.
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can be seen, the pattern looks very similar to the standard 
accuracy analysis (Fig. 1A1), albeit with overall higher accuracy 
rates for grammatical sentences and lower accuracy rates for 
ungrammatical sentences. Here, the top- performing combination 
of factors (davinci3, grammatical sentences) reaches the maxi-
mum accuracy of 100%, but this is again offset by the very low 
accuracy of this model for ungrammatical sentences. Therefore, 
the lack of accuracy reported above is not simply a consequence 
of the instability in responses; if anything, this instability some-
what corrects for the response bias toward yes answers (85.0% 
yes- responses for the preferred responses vs. 74.7% yes- responses 
in the trial- level data).
Does accuracy improve over repetitions? As described above, it 
is possible that the lack of stability actually runs in a positive 
direction, reflecting a repair process by which the LMs learn, over 
the course of multiple repetitions of the same prompt, to correct 
initial errors and generate more accurate responses. To test this 
possibility, we started from the GLMM including an interaction 
between model and condition reported above (Fig. 1A1) as a 
baseline. In an LR- test, we observed no additional main effect 
of repetitions (X2(1) = 0.00, P = 0.992), indicating no general 
positive trend for higher accuracy rates after more repetitions. 
We further observed an interaction between model and 
repetition (X2(2) = 14.02, P = 0.001), no interaction between 
condition and repetition (X2(1) = 0.04, P = 0.849), and a 
significant three- way interaction between model, condition, and 

repetition (X2(2) = 15.86, P < 0.001). The effects of repetitions 
by model and condition are displayed in Fig.  3. The only 
model- condition combination for which Fig. 3 suggests some 
improvement over repetitions is ChatGPT for ungrammatical 
sentences; the increase in accuracy for grammatical sentences 
by davinci3 is again offset by a simultaneous decrease of the 
same magnitude for ungrammatical sentences, indicating an 
increased general bias toward yes- responses. Interestingly, for 
davinci2, we observe a decrease in accuracy over repetitions 
over both conditions, which is more prominent for grammatical 
sentences.
Does stability improve over repetitions? While the previous analysis 
showed that LM accuracy does not improve over repetitions, it 
might be the case that they at least converge on a stable response 
pattern (be it accurate or inaccurate) as they repeatedly respond to 
the same prompt. In a further analysis of oscillations, we find that 
this is not the case: Adding a fixed effect of repetitions does not 
improve upon a GLMM already containing an interaction effect 
of model and condition, neither as a main effect (X2(1) = 1.33, P 
= 0.249), nor in a two- way interaction with the model (X2(3) = 
3.89, P = 0.274) or condition (X2(2) = 1.47, P = 0.479), nor in a 
three- way interaction (between repetitions, model, and condition) 
(X2(6) = 4.56, P = 0.602). The effects of repetitions on stability 
are displayed in Fig. 4.

Comparisons with Human Data. Overall, our analyses showed 
considerable differences between humans and LMs in terms of 
both accuracy and stability and how these are affected by repetition 
(Fig. 5).
Accuracy. For accuracy, the non- significant main effect of type of 
responding agent (i.e., humans vs. LMs) indicates no difference 
between the two for grammatical sentences (the reference condition; 
β = 0.48, z = 0.48, P = 0.635), while the significant interaction term 
(β = 1.94, z = 15.46, P < 0.001) indicates a substantial difference for 
ungrammatical sentences (Fig. 5A1), with humans outperforming 
LMs. For a more detailed depiction of the accuracy rates of humans 
and LMs by grammatical phenomenon, see Fig. 5A2.
Stability. Humans exhibit a more stable response pattern than LMs 
(Fig. 5B). In these analyses, we set human participants as the reference 
condition for the factor type of responding agent. For oscillations, 

Table  1. Illustration of the differences between the  
oscillation and deviation measures of response instability
Response 
sequence for sen-
tence repetition

Oscillations 
(trial level)

Overall 
oscillations Deviations

YYYYYYYYYN −000000001 1 1

YYYYNYYYYY −000110000 2 1

YYYYYNNNNN −000010000 1 5

YNYNYNYNYN −111111111 9 5
In the first and third rows, the same number of oscillations comes with large differences 
in deviation; in the third and fourth row, the same deviation comes with large differences 
in oscillations. Since the first occurrence of each sentence cannot differ from the previous 
response, it does not provide data points for the oscillation variable.
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again, we find no main effect of the type of responding agent 
(β = 1.03, z = 1.64, P = 0.102), indicating no difference between 
humans and LMs for grammatical sentences, no main effect of 
condition (β = −0.12, z = −0.81, P = 0.417), indicating no difference 
between grammatical and ungrammatical sentences for humans, but 
a significant interaction (β = 0.84, z = 6.13, P = <0.001), showing 
more oscillations in the LM responses compared to the human 
responses for ungrammatical sentences (Fig. 5B1). The exact same 
pattern emerges for the deviations (b = 0.61, t(52) = 1.63, P = 0.109 
for type; b = −0.11, t(76) = −1.15, P = 0.256 for condition; b = 0.84, 
t(858) = 4.75, P < 0.001 for their interaction); see Fig. 5B2.
Does accuracy improve over repetitions? The GLMM that best 
describes the accuracy data includes all three two- way interactions 
between repetitions, type of responding agent, and condition, 
but not additionally their three- way interaction (LR- test: X2(1) = 
2.86, P = 0.091). This model reveals that a) in line with the 
previous analysis, the LM accuracy for ungrammatical sentences 
decreases with repetitions (β = −0.05, z = −2.59, P = 0.010 for 
the condition*repetitions interaction), while critically b) human 
accuracy increases more with repetitions than LM accuracy (β = 
0.05, z = 2.25, P = 0.024, for the type*repetition interaction) and 
c) again humans are far more accurate for ungrammatical sentences 
than LMs (β = 1.93, z = 15.40, P < 0.001 for the type*condition 

interaction). Thus, as can be seen in Fig. 5C, human accuracy—
unlike LM accuracy—improves for both grammatical and 
ungrammatical sentences.
Does stability improve over repetitions? In a GLMM predicting 
oscillations, we find that LM stability does not improve over 
repetitions (β = −0.02, z = −1.11, P = 0.265 for the repetition 
main effect). We also find no significant difference between LMs 
and humans at the first presentation of a sentence (β = −0.71,  
z = −1.09, P = 0.277 for the type main effect). However, we observe 
a significant interaction term (β = −0.14, z = −5.34, P < 0.001), 
indicating that—unlike LMs—humans show fewer oscillations the 
more often they respond to the same prompt (Fig. 5D).

Discussion

The present work aims to inform the conversation on whether 
LMs can act as theories of natural language. We contribute to 
this discussion by investigating the claim that LMs possess 
human- like linguistic abilities that include learning and success-
fully applying rules of grammar. To this end, we prompt three 
LMs with a series of grammaticality judgment tasks, aiming at 
determining whether judgments are accurate (RQ1), stable 
(RQ2), and how these two factors interplay toward a possible 
convergence on stable and/or accurate answers (RQ3). The sys-
tematic testing of all three LMs revealed marginal overall above- 
chance accuracy and absence of response stability. In other 
words, the LM answers to questions tapping into the (un)gram-
maticality of prompts that pertain to different language phe-
nomena are largely inaccurate (RQ1), ever- changing (RQ2), and 
not playing out in favor of a strategy that culminates in either 
more stable or more accurate answers (RQ3). All these charac-
teristics are in stark contrast to what is observed in humans. 
Tested on the same tasks, humans provided judgments that are 
largely accurate across conditions (RQ1), stable (RQ2) and, if 
initially inaccurate, largely converging toward accurate responses 
over repetitions of the same prompt (RQ3).

This behavior is in line with what has been found in the lin-
guistics literature: Humans provide reliable and robust judgments 
about their language(s), while also trying various repair strategies 
during grammatical processing. Of course, humans are not per-
fectly accurate in such judgment tasks because language variation 
is bound to give rise to some variability in the judgments. For 
example, one of our grammatical examples is the following: “The 

repetition

m
ea

n 
ac

cu
ra

cy

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

model
davinci2
davinci3
chatGPT

condition
grammatical
ungrammatical

Fig. 3. The effect of repetitions on mean accuracy by model and condition. The transparent points represent the observed data; the opaque points represent 
the predictions of the GLMM including a three- way interaction between the factors.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

repetition

lik
el

ih
oo

d 
of

 o
sc

illa
tio

n

2 3 4 5 6 7 8 9 10

   type

davinci2
davinci3
chatGPT

Fig.  4. Response instability by model and repetitions, measured as the 
likelihood of oscillations.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
18

.1
68

.4
9.

4 
on

 J
ul

y 
9,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
11

8.
16

8.
49

.4
.



PNAS  2023  Vol. 120  No. 51  e2309583120 https://doi.org/10.1073/pnas.2309583120   7 of 10

game that the child who the lawnmower had startled in the yard 
was playing in the morning lasted for hours.” This sentence is 
labeled grammatical in the dataset (following ref. 25), but many 
grammatical sticklers would say that “who” should be “whom”, 
thus judge it as wrong. This limited interspeaker variation, together 
with performance factors (e.g., fatigue, temporary distraction, 

involuntary hit of the wrong key in an experimental setting), 
explains why humans performed significantly better than LMs 
both in terms of stability and accuracy, without however showing 
at ceiling performance.

LMs, on the other hand, are algorithms trained on generating 
probability distributions over tokens in the input data for text-  
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generation purposes. A straightforward empirical expectation 
would then be for LMs to be able to predict whether a group of 
words can, or cannot, pattern together in a language that they 
presumably use in a human- like manner. In this respect, we found 
several effects disconfirming this expectation. First, all three LMs’ 
mean accuracy is just above chance. The fact that the LMs fail at 
providing accurate judgments of well- formedness, notwithstanding 
the fact that they have been linked to (nearly) achieving mastery 
over form (21), suggests that this framing may need to be rethought. 
If one endows LMs with human- like competence over form, it is 
unclear what prevents the LMs tested in our experiment from 
producing target grammaticality judgments in a consistent and 
reliable way. Specifically, while overall accuracy is slightly above-  
chance, no LM performs above chance when questioned on 
ungrammatical prompts, as opposed to humans, whose accuracy 
is well above chance for both grammatical and ungrammatical 
sentences. The fact that the LMs largely provide correct yes- responses 
to questions that feature grammatical prompts but that higher 
accuracy in the grammatical condition invariably correlates with 
lower accuracy in the ungrammatical condition (where yes is the 
wrong response), demonstrates that the tested LMs i) are not sen-
sitive to the violations behind ungrammatical prompts and ii) are 
biased toward yes- responses.

Insensitivity to (un)grammaticality amounts to a qualitative 
mismatch problem between LM language and human language. 
LMs which cannot contribute to the description of the language 
they have been trained on, by recognizing and ruling out its 
ungrammatical instances, fail to be “observationally adequate” 
(33): They are incapable of figuring out the limits of that language’s 
variation. This failure to discern possible from impossible word 
patterns makes LMs run into a problem of over- recognition and 
consequently over- generation, as the innate constraints (or lack 
thereof ) of their architecture allow them to produce outputs that, 
while superficially similar to natural language, are indeed not nat-
ural language (34).

In LMs, failure to recognize ungrammaticality occurs despite 
the fact that the models have exposure to human feedback that 
provides evidence of the negative type (35). This exposure should 
enhance their capacity to distinguish between inputs that comply 
with the target language and those that deviate from it. In other 
words, LMs differ from humans in one important respect: the 
type of evidence they have access to. For LMs, reinforcement 
learning of this sort marks an important difference from child 
language acquisition because children do not have access to neg-
ative evidence. While caregivers may occasionally reformulate a 
child’s utterance that is deemed incorrect (36), no child system-
atically receives negative feedback for constructions that do not 
exist in their target language (37–40). More importantly, the car-
egiver corrections are often not contingent on grammatical cor-
rectness, but rather concern phonological and semantic errors 
(39). Even when adult feedback targets grammatical correctness, 
it typically consists of mere reformulations, without elaborating 
on why a sentence is ungrammatical. In other words, children—
unlike LMs—learn language without being provided with rich 
auxiliary feedback that explains the ways an incorrect sentence 
deviates from the target rule of grammar (40). This means that 
there is an important double mismatch in the input and output 
of humans vs. LMs: i) LMs receive rich information about strings 
of words that correspond to grammatically wrong sentences, while 
humans do not, but still, ii) they are not able to accurately judge 
grammatically wrong sentences as such, while neurotypical 
humans can.

In our experiment, the failure of LMs to rule out ungrammatical 
sentences is accompanied by an inability to recognize some 

grammatical prompts as such, despite the strong  yes-response bias. 
In particular, performance on the 8 tested linguistic phenomena 
seems to vary as a function of the ease of rendering structural rela-
tions in linear terms. In language, relations between words are 
defined structurally and not linearly (41). In our results, the LM 
inability to recognize prompts that are grammatical (i.e., structur-
ally legitimate), but whose linear word- order makes them look like 
they are not, is a sign of LMs lacking competence over structural 
relations. For instance, the LM accuracy on grammatical prompts 
of center- embedded sentences is at chance, notwithstanding the 
strong yes- response bias found in all LMs. On the other hand, for 
phenomena whose structural relations can be more readily coded 
in terms of linear co- occurrence (e.g., in plural attraction, number 
agreement patterns can be defined in terms of the verb agreeing 
with a semantically appropriate noun), accuracy is high even on 
ungrammatical prompts. Taken together, this inability to spot 
ungrammatical prompts as falling outside the domains of what a 
target language actually permits, together with the failure to con-
sistently recognize grammatical prompts as such, are an index of a 
performance mismatch between humans and LMs.

LMs typically produce language outputs that are largely gram-
matically correct, but is this enough evidence to claim that they 
have a human- like understanding of language? It seems there are 
reasons to believe that AI does not actually approximate human 
cognitive (including linguistic) behavior neither at the computa-
tional (42) nor at the phenotypic (5) level. While it has been 
argued that metalinguistic judgments do not give conclusive evi-
dence for a model’s capacities (43), the differences we found 
between LMs and humans attest to foundational dissimilarities 
in their performance: Humans are consistent in their judgments 
both at the individual and at the group level, whereas the LMs 
fail to be accurate and, crucially, consistent even at the individual 
level. From a methodological point of view, if the existence of 
fluent and grammatically correct LM outputs is used as an argu-
ment that supports their human- like knowledge of grammar, then 
performance that markedly deviates from human linguistic behav-
ior should count as counterevidence that challenges the presence 
of such knowledge (5).

Turning attention to the mechanisms that guide answers, all 
LMs show a strong bias toward yes- responses. In the literature, 
evidence has been found of Machine Learning algorithms mag-
nifying biases (e.g., racial, sexist, political) present in their input, 
giving rise to real- world consequences (44–46). Adding to such 
evidence, the present experiment finds a bias that is more general 
in nature. Regardless of the fact that LMs might be programmed 
as non- deterministic systems, such that the generation of the same 
answer to a given prompt seems dispreferred, a basic requirement 
for LMs to be reliable would be for this non- determinism to only 
affect the paraphrasing of content, rather than its truth value. In 
the grammaticality judgment tasks we employed, the choice 
between yes or no as answers to the question of whether the tested 
sentences are grammatically correct straightforwardly affects truth 
values (as yes and no contradict each other, and no sentence can 
be both grammatical and ungrammatical at the same time). The 
fact that the three LMs we tested systematically favor one answer 
over the other, irrespective of task conditions (grammatical vs 
ungrammatical), renders claims about the LM ability to encode 
meaning hard to sustain (22, 47, 48).

The presence of such a bias in the LM responses could be attrib-
uted to engineered preferences that make use of default strategies 
for answering. As mentioned above, the models are non- deterministic 
and lack a grasp of truth. Their aim is to provide a correct answer 
as often as possible, and to maximize the probability of providing 
correct answers, it is possible that they recruit different built- in D
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strategies for answering: from defaulting to a standard yes response 
when the answer to a prompt is unclear, to switching responses 
when the same question is prompted repeatedly, utterly disregarding 
clashing truth values. Another possibility is that this bias relates to 
frequencies in the training data. It has been shown that the accuracy 
of LMs in question- answering is directly linked to the count of 
documents containing answers for the question being asked (49) 
and that, more generally, the performance of LMs on reasoning 
tasks correlates with the frequency of relevant terms in the training 
data (50). Although no specific information is available about the 
texts on which the tested LMs have been trained, it seems certain 
that the training materials in grammatical English vastly outnumber 
those failing to comply with basic rules of grammar. Both explana-
tions we offer for the observed bias are mere speculations; what 
causes the LMs to accept as grammatical certain sequences of tokens 
that are not part of the tested language is a result left with no firm 
explanation. If, however, one reconsiders the basic premise that 
ascribes human- like language abilities to LMs, our results are more 
straightforwardly explained: The tested models are able to answer 
the questions we posited, but they have learned neither the relevant 
rules of grammar that govern the use of words nor their meaning.

The third finding of our experiment concerns the instability of 
responses. Had stability measures revealed a high rate of agreement 
in judgments concerning the exact same prompt, this would have 
allowed the inference that some sort of grammatical processing 
strategy (however wrong or correct) was employed by the LMs in 
order to navigate the task demands. The absence of decision sta-
bility forces us instead to contemplate absence of deployment of 
either task- appropriate or - inappropriate processing heuristics 
and/or rules [cf. (51)]. Observing all three LMs repeatedly provide 
different answers to the same question is in stark contrast to what 
we saw for humans: While humans provided judgments that are 
occasionally inaccurate for reasons that relate to performance fac-
tors and cognitive effort thresholds (13, 52, 53), they were none-
theless largely consistent and stable in their replies [cf. (11)]. 
Moreover, humans showed increasing stability of answers as the 
number of repetitions of a given prompt increased, again in con-
trast to what LMs did. Therefore, independently of accuracy, the 
absence of stability in LMs further complicates determining what 
exactly drives their performance. The absence of a directionality 
pattern in the responses (i.e., the tendency to proceed from 
non- target to target judgments, or vice versa) can be framed under 
a similar light, namely, as revealing a strategy void that largely 
leaves performance to chance, engineered preferences aside.

One potential challenge to our results goes through arguing 
that the tested LMs showed low language accuracy and high 
response instability because either they have not understood the 
task at hand, or they are not able to perform such a task in the 
first place. With respect to the latter, when a prompt is not parsed 
due to some temporary glitch (that may or may not be related 
to the nature of the prompt), the application interface issues 
error warnings. For instance, if ChatGPT is asked to upload a 
YouTube video of itself or reveal the secret of immortality, it may 
issue warnings that suggest that either the request was not com-
pleted successfully because an unexpected error occurred, or that 

it is an AI not capable of performing the request. In other words, 
when LMs cannot complete a request successfully, they are pro-
grammed to warn the user and acknowledge such limitations. 
In our testing sessions, no such error warnings occurred. In all 
likelihood, this suggests that LMs are indeed able of handling 
prompts that ask them simple questions about the one thing 
that is abundant in their training data: language. With respect 
to the possibility that LMs completed the tasks we administered 
without, however, truly understanding what the question “Is 
sentence X grammatically correct in English?” means, two issues 
merit unpacking.

First, if by “not understanding” one means “not understanding 
in a human- like way”, this reading is in line with our results that 
challenge the popular claim that LMs have human- like language 
abilities. Concisely, we do not ascribe a human- like language sys-
tem to LMs; in fact, this is precisely what we aimed to put to test, 
and the results we obtained challenge the conclusion that LMs 
have human- like language abilities.

Second, taking issue with the assumption that LMs should be 
able to perform simple grammaticality judgment tasks—while 
claims about LMs showing human- like language understanding, 
sentience, and an ability to extrapolate morphophonological rules 
of natural language in a way comparable to language learning by 
humans (54, 55) abound—, shifts the burden of proof from pro-
ponents to critics. This is an undesirable move because it makes 
the initial proposition (i.e., LMs have human- like language abil-
ities) empirically unfalsifiable, as any test that works for humans 
may be challenged as unsuitable and not of the right granularity 
for LMs.

To conclude, our experiment shows that the tested LMs display 
insensitivity to possible vs. impossible language, with their answers 
being both largely inaccurate and guided by a yes- response bias. 
The reason behind this failure to distinguish grammatical from 
ungrammatical sentences can be traced back to Chomsky’s view 
that the definition of grammaticality cannot depend on a) a sen-
tence being in a corpus, b) a sentence being meaningful, and c) 
the probability of it being uttered (56). Since AI models are pre-
cisely using a) and c), they are unable to master the distinction in 
question. While not taking issue with the potential value of LMs 
as tools for certain tasks, the results of the present work challenge 
the claim that LMs possess human- like language abilities. Such 
results are ultimately incompatible with the view that the tested 
LMs can serve as cognitive models of the human language capacity 
at their current stage of development.

Data, Materials, and Software Availability. XLSX, CSV, R, DOCX, PDF, TXT data 
have been deposited in the OSF (https://osf.io/7ajxr/) (57).
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